Comunidad de CIOs Revista Byte TI | Noticias tecnología

Únete a la Comunidad de Directivos de Tecnología, Ciberseguridad e Innovación Byte TI

Encontrarás un espacio diseñado para líderes como tú, donde podrás explorar tecnologías emergentes, compartir estrategias y colaborar en soluciones de vanguardia

Eroski

Eroski aplica Analítica Avanzada para optimizar su servicio de compra a domicilio

Uno de los retos más importantes a los que se enfrenta cualquier empresa dentro del sector retail es el asociado a disponer de una estimación lo más acertada posible sobre su evolución futura, tanto a nivel de venta de productos, facturación, entrega…

Sobre ello, Eroski, de la mano de Ibermática, ha puesto en marcha un sistema de Analítica Avanzada de datos para configurar un modelo predictivo que le permita optimizar el servicio de transporte de última milla.

Conocer con antelación el número de pedidos de envío a domicilio que va a registrarse, desgranada en días y franjas horarias, puede asegurar un ahorro significativo de costes (hasta del 50%), ya que el propio proveedor también los ahorra al optimizar su servicio.

Servicio de compra 

Gracias al uso de modelos de Machine Learning se ha logrado generar una previsión de la demanda de pedidos que tendrá que entregar cada uno de los grupos de transporte en cada franja horaria y cada día con un horizonte temporal de 2 meses, sin que se vea afectada la satisfacción del cliente.

Los algoritmos de Machine Learning han sido especialmente diseñados y optimizados para comprender y corregir la influencia de distintos agentes externos que puedan mermar la eficiencia de las predicciones: la cercanía a festividades o la existencia de estados anómalos, como es el caso del contexto pandémico actual, pero especialmente durante las etapas de limitación en la movilidad de los ciudadanos y de cierres perimetrales.

Eroski aplica Analítica Avanzada para optimizar su servicio de compra a domicilio

El proyecto se ha desarrollado y puesto en producción a través de workflows analíticos orquestados mediante Rocket sobre la plataforma Stratio. El tracking de los modelos, su persistencia y comparación entre experimentos se llevó a cabo en MLPojects utilizando mlflow, asegurando de esta manera la calidad en el ciclo de vida completo de los modelos de machine learning creados.

Se trata de un proyecto de calado ya que a raíz de la pandemia sanitaria este tipo de servicios se ha multiplicado, siendo muchos los usuarios que apuestan por recibir sus compras en casa.

Eficiencia de los pedidos online

Por otra parte, Ibermática ha conseguido demostrar de una forma objetiva, automática, descriptiva y auto-explicativa, cuáles son los patrones más relevantes sobre distintos indicadores que soportan, con una significancia estadística confiable, la ineficiencia en la generación de los pedidos online, en los distintos centros de distribución del Grupo Eroski.

Estas ineficiencias se traducen en costes muy significativos en cuanto a devoluciones, reembolsos, reaprovisionamientos, y un gran catálogo de gastos directos e indirectos.

Asimismo se han descubierto las combinaciones multifactoriales que motivan la aparición de incidencias en la entrega de los pedidos online en el cliente, determinando si dichas reclamaciones son reales a la hora de estimar su medición, y lo que es más importante, prediciendo y estimando aquellas incidencias no reportadas, con base de la medición del impacto directo y teórico en la satisfacción del cliente.

Deja un comentario

Scroll al inicio